Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We examine the relationship between circumnebular extinction and core mass for sets of [O III]-bright planetary nebulae (PNe) in the Large Magellanic Cloud and M31. We confirm that for PNe within 1 magnitude of the planetary nebula luminosity function’s (PNLF’s) bright-end cutoff magnitude (M*), higher core-mass PNe are disproportionally affected by greater circumnebular extinction. We show that this result can explain why the PNLF cutoff is so insensitive to population age. In younger populations, the higher-mass, higher-luminosity cores experience greater circumnebular extinction from the dust created by their asymptotic giant branch (AGB) progenitors compared to the lower-mass cores. We further show that when our core-mass–nebular extinction law is combined with post-AGB stellar evolutionary models, the result is a large range of population ages where the brightest PNe all have nearly identical [O III] luminosities. Finally, we note that while there is some uncertainty about whether the oldest stellar populations can produce PNe as bright as M*, this issue is resolved if the initial–final mass relation (IFMR) for the lowest-mass stars results in slightly more massive cores, as observed in some clusters. Alternatively, introducing a small amount of intrinsic scatter (0.022 Msun) into the IFMR also addresses this uncertainty.more » « lessFree, publicly-accessible full text available April 15, 2026
-
Abstract Lyαemitters (LAEs) are star-forming galaxies that efficiently probe the spatial distribution of galaxies in the high-redshift Universe. The spatial clustering of LAEs reflects the properties of their individual host dark matter halos, allowing us to study the evolution of the galaxy–halo connection. We analyze the clustering of 5233, 5220, and 3706 LAEs atz= 2.4, 3.1, and 4.5, respectively, in the 9 deg2COSMOS field from the One-hundred-deg2DECam Imaging in Narrowbands survey. After correcting for redshift-space distortions, LAE contamination rates, and the integral constraint, the observed angular correlation functions imply linear galaxy bias factors ofb= and forz= 2.4, 3.1, and 4.5, respectively. The median dark matter halo masses inferred from these measurements are = for the three samples, respectively. The analysis also reveals that LAEs occupy roughly 3%–7% of the halos whose clustering strength matches that of the LAEs.more » « lessFree, publicly-accessible full text available July 28, 2026
-
Aims.We investigate the physical properties and redshift evolution of simulated galaxies residing in unvirialized cosmic structures (i.e., protoclusters) at cosmic noon, to understand the influence of the environment on galaxy formation. This work is intended to build clear expectations for the ongoing ODIN (One-hundred-deg2DECam Imaging in Narrowbands) survey, which is mapping large-scale structures atz= 2.4,3.1, and 4.5 using Lyα-emitting galaxies (LAEs) as tracers. Methods.From the IllustrisTNG simulations, we define subregions centered on the most massive clusters ranked by total stellar mass atz= 0 and study the properties of galaxies within, including those of LAEs. To model the LAE population, we take a semi-analytical approach that assigns Lyαluminosity and equivalent width based on the UV luminosities to galaxies in a probabilistic manner. We investigate stellar mass, star formation rate (SFR), major merger events, and specific star formation rate of the population of star-forming galaxies and LAEs in the field- and protocluster environment and trace their evolution across cosmic time betweenz= 0−4. Results.We find that the overall shape of the UV luminosity function in simulated protocluster environments is characterized by a substantially shallower faint-end slope and a large excess on the bright end, signaling different formation histories for galaxies therein. The difference is milder for the Lyαluminosity function. While protocluster galaxies follow the same SFR-M★scaling relation as average field galaxies, a larger fraction appears to have experienced major mergers in the last 200 Myr and as a result shows enhanced star formation at a ≈60% level, leading to a flatter distribution in both SFR and M★relative to galaxies in the average field. We find that protocluster galaxies, including LAEs, begin to quench much earlier (z∼0.8−1.6) than field galaxies (z∼0.5−0.9); our result is in qualitative agreement with recent observational results and highlights the importance of large-scale environment on the overall formation history of galaxies.more » « lessFree, publicly-accessible full text available June 1, 2026
-
During our spectroscopic survey of central stars of faint planetary nebulae (PNe), we found that the nucleus of Abell 57 exhibits strong nebular emission lines. Using synthetic narrowband images, we show that the emission arises from an unresolved compact emission knot (CEK) coinciding with the hot (90,000 K) central star. Thus Abell 57 belongs to the rare class of “EGB 6-type” PNe, characterized by dense emission cores. Photometric data show that the nucleus exhibits a near-infrared excess, due to a dusty companion body with the luminosity of an M0 dwarf but a temperature of ∼1800 K. Emission-line analysis reveals that the CEK is remarkably dense (electron density ∼ 1.6 × 10^7 cm^{−3}), and has a radius of only ∼4.5 au. The CEK suffers considerably more reddening than the central star, which itself is more reddened than the surrounding PN. These puzzles may suggest an interaction between the knot and central star; however, Hubble Space Telescope imaging of EGB 6 itself shows that its CEK lies more than ∼125 au from the PN nucleus. We discuss a scenario in which a portion of the asymptotic giant branch wind that created the PN was captured into a dust cloud around a distant stellar companion; this cloud has survived to the present epoch, and has an atmosphere photoionized by radiation from the hot central star. However, in this picture EGB 6-type nuclei should be relatively common, yet they are actually extremely rare; thus they may arise from a different transitory phenomenon. We suggest future observations of Abell 57 that may help unravel its mysteries.more » « less
-
Abstract In this work, we test the frequent assumption that Lyα-emitting galaxies (LAEs) are experiencing their first major burst of star formation at the time of observation. To this end, we identify 74 LAEs from the ODIN Survey with rest-UV-through-NIR photometry from UVCANDELS. For each LAE, we perform nonparametric star formation history (SFH) reconstruction using the Dense Basis Gaussian-process-based method of spectral energy distribution fitting. We find that a strong majority (67%) of our LAE SFHs align with the frequently assumed archetype of a first major star formation burst, with at most modest star formation rates (SFRs) in the past. However, the rest of our LAE SFHs have significant amounts of star formation in the past, with 28% exhibiting earlier bursts of star formation, with the ongoing burst having the highest SFR (dominant bursts) and the final 5% having experienced their highest SFR in the past (nondominant bursts). Combining the SFHs indicating first and dominant bursts, ∼95% of LAEs are experiencing their largest burst yet: a formative burst. We also find that the fraction of total stellar mass created in the last 200 Myr is ∼1.3 times higher in LAEs than in mass-matched Lyman break galaxy (LBG) samples, and that a majority of LBGs are experiencing dominant bursts, reaffirming that LAEs differ from other star-forming galaxies. Overall, our results suggest that multiple evolutionary paths can produce galaxies with strong observed Lyαemission.more » « lessFree, publicly-accessible full text available June 4, 2026
-
Abstract We present measurements ofz ∼ 2.4 ultraviolet (UV) background light using Lyαabsorption from galaxies atz ∼ 2–3 in the Hobby–Eberly Telescope Dark Energy Experiment (HETDEX) database. Thanks to the wide area of this survey, we also measure the variability of this light across the sky. The data suggest an asymmetric geometry where integrated UV light from background galaxies is absorbed by Hiwithin the halo of a foreground galaxy, in a configuration similar to damped Lyαsystems. Using stacking analyses of over 400,000 HETDEX LAE spectra, we argue that this background absorption is detectable in our data. We also argue that the absorption signal becomes negative due to HETDEX’s sky-subtraction procedure. The amount that the absorption is oversubtracted is representative of thez ∼ 2.4 UV contribution to the overall extragalactic background light (EBL) at Lyα. Using this method, we determine an average intensity (inνJνunits) of 12.9 ± 3.7 nW m−2sr−1at a median observed wavelength of 4134 Å, or a rest-frame UV background intensity of 508 ± 145 nW m−2sr−1atz ∼ 2.4. We find that this flux varies significantly depending on the density of galaxies in the field of observation. Our estimates are consistent with direct measurements of the overall EBL.more » « lessFree, publicly-accessible full text available April 8, 2026
-
Abstract Thanks to the MUSE integral field spectrograph on board the Very Large Telescope (VLT), extragalactic distance measurements with the [Oiii]λ5007 planetary nebula luminosity function (PNLF) are now possible out to ∼40 Mpc. Here we analyze the VLT/MUSE data for 20 galaxies from the ESO public archive to identify the systems’ planetary nebulae (PNe) and determine their PNLF distances. Three of the galaxies do not contain enough PNe for a robust measure of the PNLF, and the results for one other system are compromised of the galaxy’s internal extinction. However, we obtain robust PNLF distances for the remaining 16 galaxies, two of which are isolated and beyond 30 Mpc in a relatively unperturbed Hubble flow. From these data, we derive a Hubble constant of 74.2 ± 7.2 (stat) ±3.7 (sys) km s−1Mpc−1, a value that is very similar to that found from other quality indicators (e.g., Cepheids, the tip of the red giant branch, and surface brightness fluctuations). At present, the uncertainty is dominated by the small number of suitable galaxies in the ESO archive and their less-than-ideal observing conditions and calibrations. Based on our experience with these systems, we identify the observational requirements necessary for the PNLF to yield a competitive value forH0that is independent of the Type Ia supernova distance scale.more » « less
-
Abstract Line flux ratios from [O ii] doublets can probe electron densities in the interstellar medium of galaxies. We employ the Southern African Large Telescope’s (SALT) Robert Stobie Spectrograph (RSS), which provides sufficient resolution (R ∼ 3000) to split the [O ii] doublets, to target galaxies from Hobby-Eberly Telescope Dark Energy Experiment and One-hundred-deg2DECam Imaging in Narrowbands with emission line fluxes of at least 2 × 10−16 erg cm−2 s−1. Reduction is carried out using RSSMOSPipeline to reduce SALT-RSS data through wavelength calibration. Despite SALT-RSS being known for its difficulty to flux calibrate, we present spectra that have been flux calibrated using alignment stars with Sloan Digital Sky Survey spectra as standards. We combine multiple spectroscopic settings to obtain full 2D spectra across a wavelength range of 3500–9500 Å. A 1D spectrum can then be extracted to calculate flux ratios and line widths, revealing important physical properties of these bright [O ii]-emitters.more » « less
-
Abstract Investigating the impact of galaxy properties on emergent Lyαemission is crucial for reionization studies, given the sensitivity of Lyαto neutral hydrogen. This study presents an analysis of the physical characteristics of 155 star-forming galaxies, 29 with Lyαdetected, and 126 with Lyαnot detected with LyαEW < 20 Å, atz= 1.9–3.5, drawn from the MOSFIRE Deep Evolution Field survey, that have overlapping observations from the Hobby–Eberly Telescope Dark Energy Experiment survey. To unravel the interstellar medium (ISM) conditions in our sample, we developed a custom nebular line modeling algorithm based on the MAPPINGS V photoionization model grid and theemceeframework. Combining nebular-based ISM properties with photometry-based global properties, constrained viaBagpipes, we explore distinctions in the stellar and gas properties between Lyα-detected and Lyα-nondetected galaxies. Our analysis reveals statistically significant differences between the two samples in terms of stellar mass and dust attenuation (AV) at >2σsignificance, as determined via a Kolmogorov–Smirnov test. Moreover, there are weaker (≲1σsignificance) indications that the ionization parameter and metallicity differ between the two samples. Our results demonstrate that the escape fraction of Lyα( ) is inversely correlated with stellar mass, star formation rate, and dust attenuation, while it is positively correlated with the ionization parameter, with significance levels exceeding 2σ. Our findings suggest that the interstellar environments of Lyα-detected galaxies, characterized by low mass, low dust, low gas-phase metallicity, and high ionization parameters, play a pivotal role in promoting the escape of Lyαradiation.more » « less
-
Abstract Planetary nebula (PN) surveys in systems beyond ∼10 Mpc often find high-excitation, point-like sources with [Oiii]λ5007 fluxes greater than the apparent bright-end cutoff of the planetary nebula luminosity function (PNLF). Here we identify PN superpositions as one likely cause for the phenomenon and describe the proper procedures for deriving PNLF distances when object blends are a possibility. We apply our technique to two objects: a model Virgo-distance elliptical galaxy observed through a narrowband interference filter, and the Fornax lenticular galaxy NGC 1380 surveyed with the MUSE integral-field unit spectrograph. Our analyses show that even when the most likely distance to a galaxy is unaffected by the possible presence of PN superpositions, the resultant value will still be biased toward too small a distance due to the asymmetrical nature of the error bars. We discuss the future of the PNLF in an era where current ground-based instrumentation can push the technique to distances beyond ∼35 Mpc.more » « less
An official website of the United States government
